

ACQUE SOTTERRANEE della Provincia di Rimini

2006 - 2008

Relazione curata da

Arpa – Sezione di Rimini

Servizio Sistemi Ambientali

Servizio Sistemi Ambientali Dott. Stefano R. de Donato Responsabile Servizio Sistemi Ambientali

Responsabile Area Monitoraggio e Valutazione Corpi Idrici Dott. Alberto Capra

Redazione report:

Dott.ssa Patrizia Anelli

Hanno collaborato alla realizzazione dei campionamenti:

Anelli Patrizia - Berardi Maurizio - Demarchi Giulio - Ferrini Francesco - Para Cinzia - Pellegrino Paola - Rinaldini Vanessa

INDICE

PREMESSA

1 - Inquadramento legislativopag.	4
2 - Corpi idrici sotterranei significativi	5
3 - Caratterizzazione della retepag.	6
4 - La classificazione quali quantititiva delle acque sotterraneepag.	9
- 4.1 - La classificazione Quantitativa (SQuAS)pag.	9
4.1.1 - Grafici piezometrie conoide Marecchia	10
4.1.2 Grafici piezometrie conoide Concapag.	14
- 4.2 - La Classificazione Qualitativa (SCAS)pag.	16
5 - Lo Stato Ambientale (SAAS)pag. 2	27
6 - Conclusioni pag. 1	30

1. INQUADRAMENTO LEGISLATIVO

L'approccio ecosistemico, sviluppato dalle recenti normative nel campo dell'idrosfera (DLgs 152/99, Dir.2000/60/CE e DLgs 152/06), richiede l'affermarsi di competenze in grado di sostenere le nuove procedure di conoscenza e conservazione dell'integrità ecologica degli ecosistemi che finalizzino le iniziative di monitoraggio, di controllo e di gestione delle informazioni ambientali, alla costruzione di un sistema informativo integrato a supporto dei processi decisionali.

Il Piano di tutela delle Acque della Regione Emilia-Romagna, approvato dall'Assemblea Legislativa con Delibera n.40 del dicembre 2005, ha posto per tutti i corpi idrici sotterranei come obiettivi i seguenti:

- Per gli aspetti qualitativi il raggiungimento dell'obiettivo di qualità ambientale corrispondente allo stato di "buono" entro il 2016;
- Per gli aspetti quantitativi l'azzeramento del deficit idrico.

Il PTA regionale è stato formulato sulla base del D.Lgs. 152/99, oggi formalmente superato dal D.Lgs. 152/06, a sua volta in revisione, che costituirebbe l'effettivo recepimento della Direttiva 2000/60/CE. In attesa dell'emanazione degli allegati contenenti le nuove procedure tecniche, il D.Lgs. 152/99 rimane l'unico riferimento per l'elaborazione e la classificazione dei dati ed ha consentito di verificare il raggiungimento degli obiettivi intermedi del PTA al 2008. Ciò nonostante, va considerato che l'intero sistema di monitoraggio e valutazione dello stato ecologico delle acque è in corso di profonda trasformazione per l'adeguamento alle procedure europee.

La Direttiva 2006/118/CE sulla protezione delle acque sotterranee dall'inquinamento e dal deterioramento istituisce misure specifiche per prevenire e controllare l'inquinamento delle acque sotterranee. La presente direttiva integra le disposizioni intese a prevenire o limitare le immissioni di inquinanti nelle acque sotterranee, già previste nella direttiva 2000/60/CE, e mira a prevenire il deterioramento dello stato di tutti i corpi idrici sotterranei.

Il 19 aprile è entrato in vigore il D.Lgs. 30/2009 che recepisce la Direttiva 2006/118/CE, fornendo norme tecniche applicative al D.Lgs. 152/2006. Definisce le "misure specifiche per prevenire e controllare l'inquinamento ed il depauperamento delle acque sotterranee".

Obiettivi principali della norma sono:

- identificare e caratterizzare i corpi idrici sotterranei;
- valutare il buono stato chimico degli stessi (attraverso gli standard di qualità e i valori soglia);
- individuare e invertire le tendenze significative e durature all'aumento dell'inquinamento;
- classificare lo stato quantitativo.

2. CORPI IDRICI SOTTERRANEI SIGNIFICATIVI

Nel contesto ambientale dell'Emilia - Romagna, tutta la pianura contiene corpi idrici sotterranei significativi, e come tale è da monitorare, ma ai corpi stessi si riconosce diversa importanza gerarchica. Sulla base delle caratteristiche geologiche, idrochimiche ed idrodinamiche che descrivono i complessi idrogeologici è possibile attribuire ad alcuni di questi una valenza prioritaria e ad altri una valenza secondaria. Si parlerà quindi di "corpi idrici significativi prioritari" e "corpi idrici significativi di interesse".

I corpi idrici significativi prioritari ai fini del monitoraggio ambientale sono stati individuati e caratterizzati nel Piano di Tutela delle Acque e sono costituiti dalle conoidi alluvionali appenniniche che si differenziano sulla base del volume dei depositi grossolani in esse presenti suddividendole in conoidi maggiori, intermedie e minori, nonché in conoidi pedemontane e conoidi distali.

Per le conoidi principali la densità dei punti di misura di monitoraggio è pari a circa un punto ogni 12-18 Km², con un valor medio di 14 Km². Per le conoidi minori, la densità è pari a circa un punto di misura ogni 12-25 Km², con un valor medio di circa 16 Km².

Per i corpi idrici di interesse le densità sono ovviamente minori, con valori che variano da un pozzo ogni 25-30 Km² per i depositi del Po e per la piana alluvionale appenninica.

Per quanto riguarda la realtà della Provincia di Rimini sono presenti due conoidi alluvionali (Fig.2.1):

- una conoide maggiore del Marecchia
- una conoide intermedia del Conca.

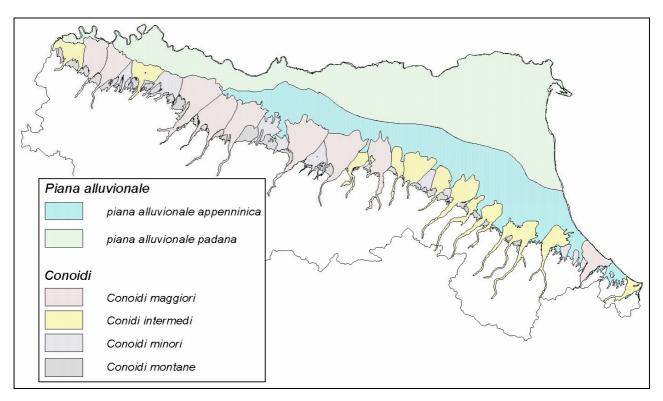


Figura 2.1 - Distribuzione dei corpi idrici sotterranei del Piano di Tutela delle Acque

3. CARATTERIZZAZIONE DELLA RETE

Con Delibera di Giunta Regionale dell'Emilia - Romagna numero 2135 del 2/11/2004 è stata approvata la rete di monitoraggio delle acque sotterranee (Fig. 3.1) dove i rilievi piezometrici ed i campionamenti dei parametri fisico-chimici e microbiologici vengono condotti da Arpa.



Figura 3.1 - Rete Regionale di Monitoraggio delle Acque Sotterranee

Nella Provincia di Rimini i punti della rete, definiti appunto dalla Delibera Regionale n. 2135, sono 25, 5 pozzi privati e 20 di proprietà di Romagna Acque - Soc. delle Fonti, e rappresentano le peculiarità del nostro acquifero, utili ad esprimere un giudizio di qualità.

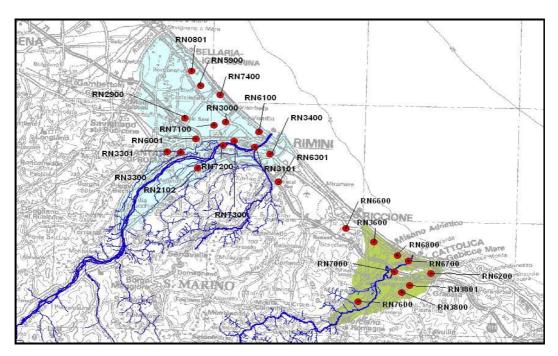


Figura 3.2 - Cartina provinciale dei pozzi situati nelle due conoidi

I pozzi sono contraddistinti da un codice di sei caratteri composto da due lettere per la provincia RN, due cifre che rappresentano il numero progressivo (che varia con la località), ed altre due cifre che indicano dei sotto-punti, ossia pozzi diversi che, teoricamente, si trovano nella stessa località ed incidono sul medesimo acquifero e georeferenziati con sistema UTM 32.

XUTM	YUTM	codice	tipo di riliev	screening analitico	frequenza piezometria	profondita	localita pozzo	indirizzo pozzo
778040	4892209	RN08-01	ch	esteso (sperimentale)		114,00	IGEA MARINA	VIA ENNIO
779280	4882814	RN21-02	pz ch	esteso (sperimentale)	trimestrale	53,60	S. ERMETE	VIA VALDAZZE
777808	4887606	RN29-00	pz ch	parzialmente semplificato	semestrale	37,00	S.VITO	VIA ORSOLETO 286
781377	4887507	RN30-00	pz ch	esteso	semestrale	42,00	RIMINI	VIA MANFRONI 16
784080	4885274	RN31-01	pz ch	esteso (sperimentale)	trimestrale	31,00	CELLE	VIA TONALE
777670	4884250	RN33-00	pz ch	esteso	semestrale	58,00	SANTARCANGELO DI ROMAG	VIA BORNACCINO
776388	4884225	RN33-01	pz ch	esteso (sperimentale)	trimestrale	27,00	SANTARCANGELO DI ROMAG	VIA DELLA RESISTENZA 5
785440	4884660	RN34-00	pz ch	completo pericolose	mensile	30,00	RIMINI	VIA BASTIONI OCCIDENTALE
795047	4876784	RN36-00	pz ch	parzialmente semplificato	semestrale	33,00	LE FONTANELLE	VIA CALABRIA
797810	4872090	RN38-00	pz		semestrale	34,30	S.GIOVANNI IN MARIGNAN	VIA CASE NUOVE
798483	4872791	RN38-01	pz ch	parzialmente semplificato	semestrale	38,00	S.GIOVANNI IN MARIGNAN	VIA AL MARE
778940	4890868	RN59-00	pz ch	semplificato	semestrale	234,00	BORDONCHIO	VIA ABBA
778901	4885647	RN60-01	pz ch	esteso (sperimentale)	trimestrale	78,00	S.GIUSTINA	VIA ANTICA EMILIA
784329	4886753	RN61-00	ch	parzialmente semplificato		,	RIVABELLA	VIA XXV MARZO
800200	4874114	RN62-00	pz ch	completo pericolose	semestrale	35,60	CATTOLICA	VIA DALLA CHIESA
786360	4882003	RN63-01	pz		semestrale	7,00	VILLAGGIO I° MAGGIO	VIA MONTESCUDO 103
792520		RN66-00	pz		semestrale	8,00	IL VILLAGGIO	VIA TOSCANA 20
798178	4875180	RN67-00	pz ch	parzialmente semplificato	mensile	32,30	PORTO VERDE	VIA CONCA
797180	4875630	RN68-00	pz ch	esteso (sperimentale)	trimestrale	36,00	MISANO ADRIATICO	VIA ADRIATICA
797073	4874028	RN70-00	pz		trimestrale	5,00	MONTALBANO	VIA FRASSINETO
780399		RN71-00	pz ch	esteso (sperimentale)	trimestrale	,	CASE NUOVE	VIA ORSOLETO
781285	4885183	RN72-00	pz ch	esteso (sperimentale)	trimestrale	105,00	POLVERIERA	VIA DEI MULINI
782448			pz ch	esteso (sperimentale)	trimestrale	,	VISERBA MONTE	VIA EMILIA
780710	4890088	RN74-00	pz ch	esteso (sperimentale)	trimestrale	25,00	TORRE PEDRERA	VIA APOLLONIA
794110	4870918	RN76-00	pz ch	esteso (sperimentale)	semestrale	13,00	S. ANDREA IN CASALE	VIA CERRO

La Rete Regionale delle acque sotterranee è composta da due reti:

- una rete della piezometria o quantitativa;
- una rete del chimismo o qualitativa.

Queste reti sono tra loro connesse ed un pozzo può essere presente in una o in entrambe le reti (Tabelle 3.1-3.2).

I principali centri abitati della Provincia sono Rimini, Bellaria Igea Marina e Santarcangelo di Romagna, Riccione, Misano A., S. Giovanni in M., Cattolica, S. Clemente e Morciano di R.

Tabella 3.1 – Pozzi ubicati nella Conoide del Marecchia

codice	tipo_di_rilievo	screening_analitico	piezometria	profondità	COMUNE	INDIRIZZO_POZZO
RN08-01	ch	completo		114,00	BELLARIA - IGEA MARINA	VIA ENNIO
RN21-02	pz ch	completo	trimestrale	53,60	RIMINI	VIA VALDAZZE
RN29-00	pz ch	parz. Sempl.	semestrale	37,00	RIMINI	VIA ORSOLETO 286
RN30-00	pz ch	completo	semestrale	42,00	RIMINI	VIA MANFRONI 16
RN31-01	pz ch	completo	trimestrale	31,00	RIMINI	VIA TONALE
RN33-00	ch	completo	semestrale	58,00	S.ARCANGELO DI ROMAGNA	VIA BORNACCINO
RN33-01	pz ch	completo	trimestrale	27,00	S.ARCANGELO DI ROMAGNA	VIA DELLA RESISTENZA 5
RN34-00	pz ch	completo	mensile	30,00	RIMINI	VIA BASTIONI OCCIDENTALE
RN59-00	pz ch	semplificato	semestrale	234,00	BELLARIA - IGEA MARINA	VIA ABBA
RN60-01	pz ch	completo	trimestrale	78,00	RIMINI	VIA ANTICA EMILIA
RN61-00	ch	parz. Sempl.		90,00	RIMINI	VIA XXV MARZO
RN63-01	pz ch	parz. Sempl.	semestrale	7,00	RIMINI	VIA MONTESCUDO 103
RN71-00	pz ch	completo	trimestrale	101,20	RIMINI	VIA ORSOLETO
RN72-00	pz ch	completo	trimestrale	105,00	RIMINI	VIA DEI MULINI
RN73-00	pz ch	completo	trimestrale	50,00	RIMINI	VIA EMILIA
RN74-00	pz ch	completo	trimestrale	25,00	RIMINI	VIA APOLLONIA

pozzi privati

Tabella 3.2 – Pozzi ubicati nella Conoide del Conca

codice	tipo_di_rilievo	screening_analitico	piezometria	profondità	COMUNE	INDIRIZZO_POZZO
RN36-00	pz ch	parz.sempl.	semestrale	33,00	RICCIONE	VIA CALABRIA
RN38-00	pz		semestrale	34,30	S.GIOVANNI IN MARIGNANO	VIA CASE NUOVE
RN38-01	pz ch	parz.sempl.	semestrale	38,00	S.GIOVANNI IN MARIGNANO	VIA AL MARE
RN62-00	pz ch	completo	semestrale	35,60	CATTOLICA	VIA DALLA CHIESA
RN66-00	pz		semestrale	8,00	RICCIONE	VIA TOSCANA 20
RN67-00	pz ch	parz.sempl.	mensile	32,30	MISANO ADRIATICO	VIA CONCA
RN68-00	pz ch	completo	trimestrale	36,00	MISANO ADRIATICO	VIA ADRIATICA
RN70-00	pz		trimestrale	5,00	S.GIOVANNI IN MARIGNANO	VIA FRASSINETO
RN76-00	pz ch	completo	semestrale	13,00	SAN CLEMENTE	VIA CERRO

pozzi privati

4. LA CLASSIFICAZIONE QUANTI - QUALITATIVA DELLE ACQUE SOTTERRANEE

La classificazione delle acque sotterranee, secondo il D.Lgs. 152/99, prevede la determinazione di uno Stato Quantitativo (SQUAS) o di equilibrio idrogeologico, di uno Stato Chimico o qualitativo (SCAS) e di uno Stato Ambientale o quali-quantitativo (SAAS) che rappresenta una sintesi per sovrapposizione delle due classificazioni precedenti.

4.1 LA CLASSIFICAZIONE QUANTITATIVA (SQUAS)

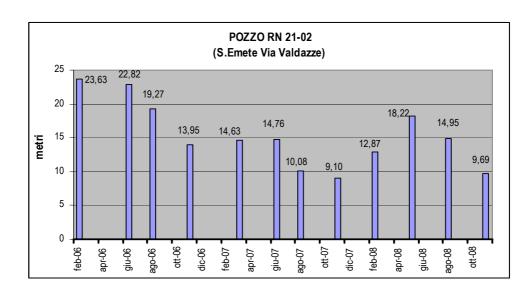
Lo stato quantitativo costituisce per i corpi idrici sotterranei un parametro necessario ai fini della valutazione del loro stato ambientale. Lo stato quantitativo, espresso come indice SQUAS, è definito dal D. Lgs. 152/99, sulla base delle alterazioni delle condizioni di equilibrio connesse con la velocità naturale di ravvenamento dell'acquifero.

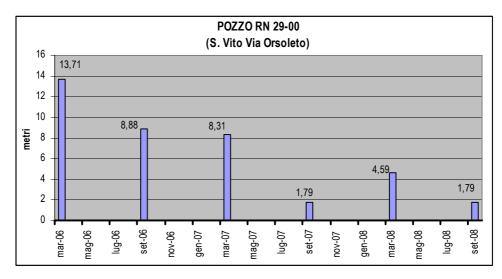
Il D.Lgs. 152/99 riporta le indicazioni di principio secondo le quali la classificazione quantitativa deve essere basata sulle alterazioni misurate o previste delle condizioni di equilibrio idrogeologico. Vengono identificate le quattro classi quantitative riportate in Tabella 4.1.1 unitamente alla loro descrizione.

Tabella 4.1.1 - Definizione dello stato quantitativo delle acque sotterranee

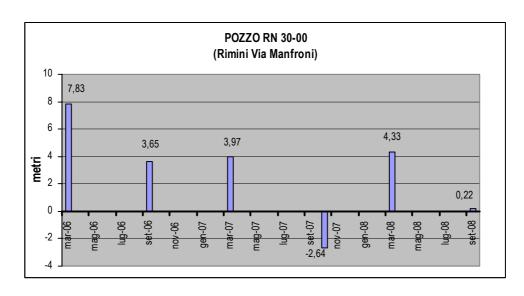
CLASSE A	L'impatto antropico è nullo o trascurabile con condizioni di equilibrio idrogeologico. Le estrazioni di acqua o alterazioni della velocità naturale di ravvenamento sono sostenibili sul lungo periodo.
CLASSE B	L'impatto antropico è ridotto, vi sono moderate condizioni di disequilibrio del bilancio idrico, senza che tuttavia ciò produca una condizione di sovrasfruttamento, consentendo un uso della risorsa e sostenibile sul lungo periodo.
CLASSE C	Impatto antropico significativo con notevole incidenza dell'uso sulla disponibilità della risorsa evidenziata da rilevanti modificazioni agli indicatori generali sopraesposti (1).
CLASSE D	Impatto antropico nullo o trascurabile, ma con presenza di complessi idrogeologici con intrinseche caratteristiche di scarsa potenzialità idrica.

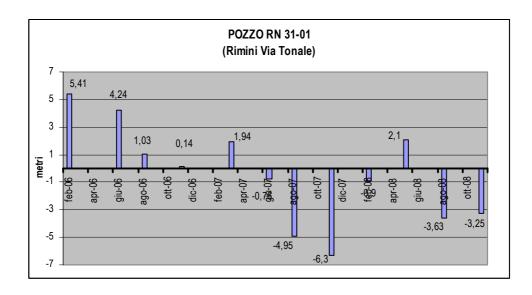
Il monitoraggio quantitativo della risorsa idrica sotterranea avviene attraverso la determinazione della *piezometria*, che è ottenuta sperimentalmente misurando il livello statico di falda all'interno del pozzo rispetto ad un punto di riferimento quotato in superficie con livellazione topografica, ottenendo quindi una valore riferito al livello del mare. L'andamento dei livelli di falda è il risultato di varie componenti, di tipo naturale e/o antropico, alle quali si aggiunge una variabilità stagionale, che insieme ne

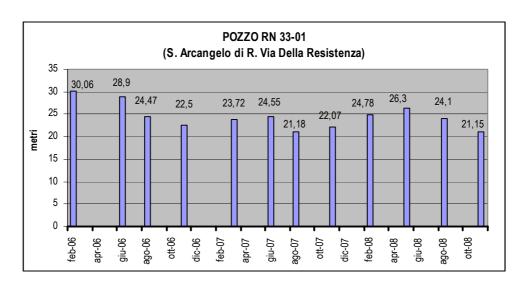


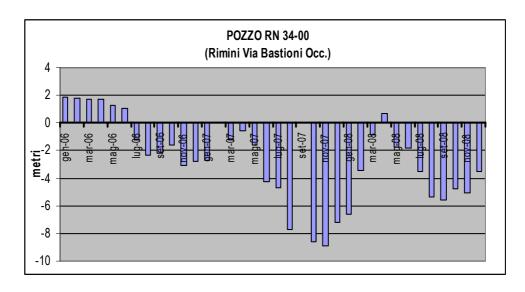

determinano il comportamento, rendendolo più complesso e talora mascherando parzialmente alcuni effetti.

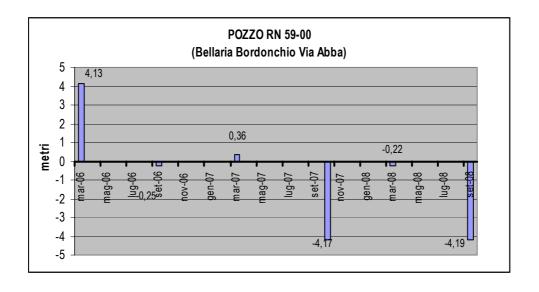
Le frequenze di monitoraggio della piezometria sono (Tab.3.1-3.2):

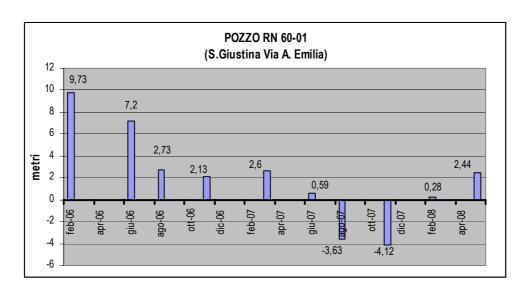

- <u>semestrale</u>: si colloca nelle due stagioni intermedie primavera e autunno, finalizzato a monitorare la fase di massima piena delle falde (primavera) e la massima magra (autunno);
- <u>trimestrale</u>: riguarda in particolare i nuovi pozzi della rete;
- <u>mensile</u>: prevalentemente pozzi ad uso civile.

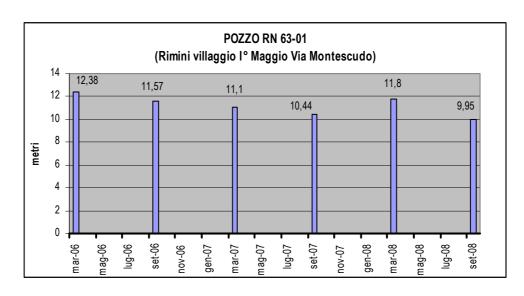

4.1.1 GRAFICI PIEZOMETRIE POZZI CONOIDE MARECCHIA

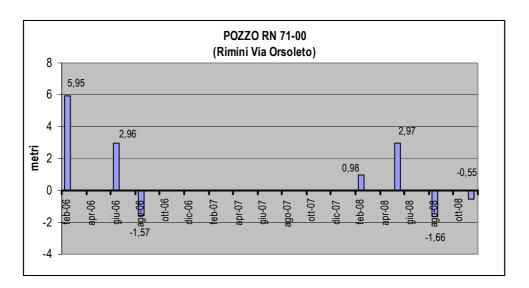


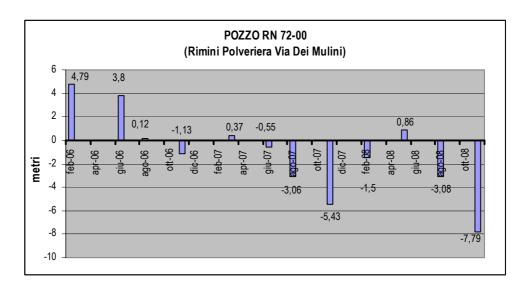


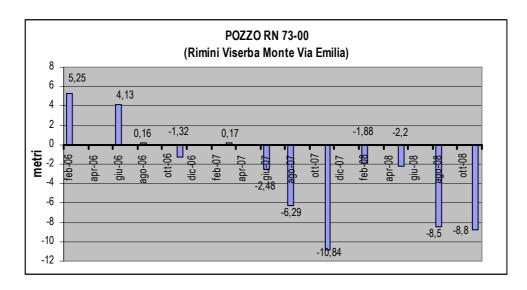


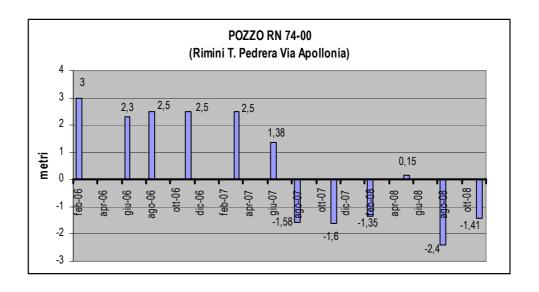


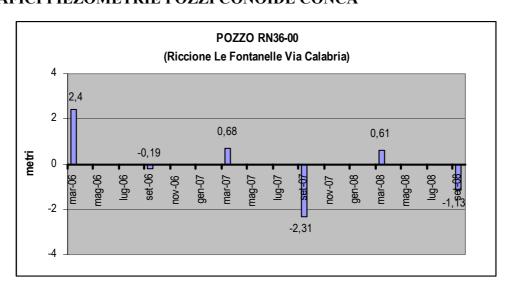


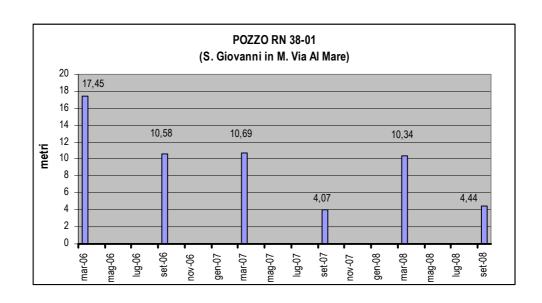


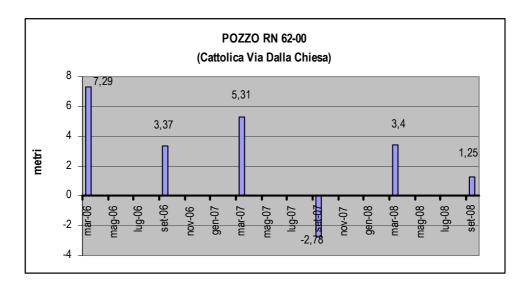


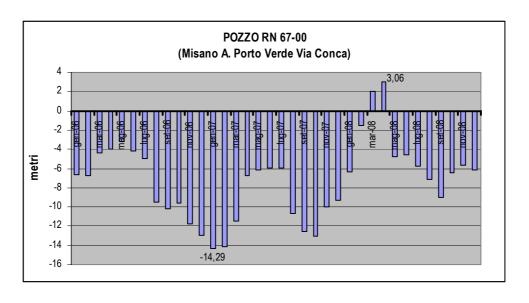


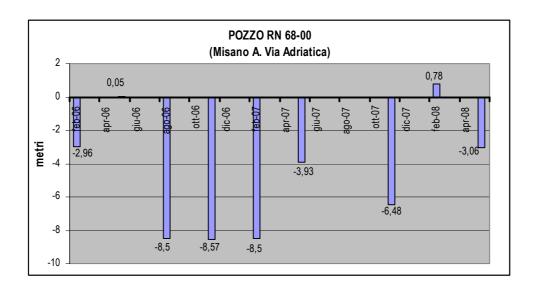


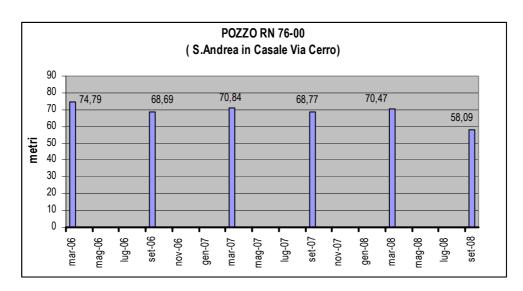







4.1.2 GRAFICI PIEZOMETRIE POZZI CONOIDE CONCA





4.2 LA CLASSIFICAZIONE QUALITATIVA (SCAS)

Il rilevamento della qualità del corpo idrico sotterraneo è basato sulla determinazione dei "parametri di base" riportati nella tabella 19, Allegato 1, D.Lgs. n. 152/99 e succ. mod.

La fase di monitoraggio ha la finalità di caratterizzare l'acquifero con cadenza semestrale, precisamente nel periodo primaverile (massima piena delle falde) e nel periodo autunnale (massima magra). Nella rete regionale, con l'intento di razionalizzare i costi dei monitoraggi, si sono distinti i parametri del monitoraggio qualitativo in quattro profili analitici, in sintonia con la storia delle analisi pregresse, la funzione di ciascun pozzo e la vulnerabilità della zona.

Eventuali parametri addizionali relativi ad inquinanti specifici potranno essere individuati in funzione dell'uso del suolo, delle attività presenti sul territorio, in considerazione della vulnerabilità della risorsa e della tutela degli ecosistemi connessi o di particolari caratteristiche ambientali.

Le tabelle seguenti elencano i quattro profili chimici e relativi parametri analizzati.

Parametri analitici del profilo completo						
Livello piezometrico	Antimonio	Percloroetilene				
Temperatura acqua	Argento	Cloroformio				
pH	Arsenico	Metildoroformio				
Conducibilità a 20°C	Bario	Monobromodiclorometano				
Durezza	Berillio	Dibromoclorometano				
Bicarbonati	Boro	Alaclor				
Calcio	Cadmio	Atrazina				
Cloruri	Cromo totale	Metolaclor				
Magnesio	Cromo VI	Molinate				
Potassio	Fluoruri	Propazina				
Sodio	Mercurio	Simazina				
Nitrati	Nichel	Terbutilazina				
Solfati	Piombo	Cianuri				
Ione Ammonio	Rame	Fenoli				
Ferro	Selenio	Benzene				
Manganese	Zin∞	I.P.A.				
Ossidabilità (Kubel)	1-2 Didoroetano	E. coli				
Nitriti	Tricloroetilene	Aeromonas				
Alluminio	Tetracloruro di carbonio					

Parametri analitici del profilo esteso						
Livello piezometrico	Arsenico	Alaclor				
Temperatura acqua	Boro	Atrazina				
pН	Cromo totale	Metolaclor				
Conducibilità a 20°C	Cromo VI	Molinate				
Durezza	Fluoruri	Propazina				
Bicarbonati	Nichel	Simazina				
Calcio	Piombo	Terbutilazina				
Cloruri	Rame	Cianuri				
Magnesio	Zinco	Fenoli				
Potassio	1-2 Dicloroetano	Benzene				
Sodio	Tricloroetilene	I.P.A.				
Nitrati	Tetracloruro di carbonio	E. ∞li				
Solfati	Percloroetilene	Aeromonas				
Ione Ammonio	Cloroformio					
Ferro	Metilcloroformio					
Manganese	Monobromodiclorometano					
Ossidabilità (Kubel)	Dibromoclorometano					
Nitriti	Percloroetilene					

	profilo parzialmente semplifi	icato
Livello piezometrico	Ferro	Tricloroetilene
Temperatura acqua	Manganese	Tetracloruro di carbonio
pН	Ossidabilità (Kubel)	Percloroetilene
Conducibilità a 20°C	Nitriti	Cloroformio
Durezza	Arsenico	Metilcloroformio
Bicarbonati	Boro	Monobromodiclorometano
Calcio	Cromo totale	Dibromodorometano
Cloruri	Fluoruri	Cianuri
Magnesio	Nichel	Fenoli
Potassio	Piombo	I.P.A.
Sodio	Rame	E. coli
Nitrati	Selenio	Aeromonas
Solfati	Zinco	
Ione Ammonio	1-2 Dicloroetano	

Parametri analitici del profilo semplificato						
Livello piezometrico	Sodio	Cromo totale				
Temperatura acqua	Nitrati	Fluoruri				
pН	Solfati	Nichel				
Conducibilità a 20°C	Ione Ammonio	Piombo				
Durezza	Ferro	Rame				
Bicarbonati	Manganese	Zin∞				
Calcio	Ossidabilità (Kubel)	E. coli				
Cloruri	Nitriti	Aeromonas				
Magnesio	Arsenico					
Potassio	Boro					

Il D.Lgs. 152/99 definisce cinque classi qualitative, riportate in tabella 4.2.1 insieme alla loro descrizione. Per l'attribuzione della classe, si fa riferimento ai valori di concentrazione dei sette parametri chimici di base, riportati nella tabella 4.2.2.

La classificazione è determinata dal valore peggiore di concentrazione riscontrato nelle analisi dei diversi parametri di base.

Tabella 4.2.1 – Definizione dello stato chimico o qualitativo delle acque sotterranee.

CLASSE 1	Impatto antropico nullo o trascurabile con pregiate caratteristiche idrochimiche
CLASSE 2	Impatto antropico ridotto e sostenibile sul lungo periodo e con buone caratteristiche idrochimiche
CLASSE 3	Impatto antropico significativo e con caratteristiche idrochimiche generalmente buone, ma con alcuni segnali di compromissione
CLASSE 4	Impatto antropico rilevante con caratteristiche idrochimiche scadenti
CLASSE 0	Impatto antropico nullo o trascurabile ma con particolari facies idrochimiche naturali in concentrazioni al di sopra del valore della Classe 3

Tabella 4.2.2 – Determinazione della classificazione qualitativa in base al valore dei parametri di base (Tabella 20 dell'Allegato 1 del D.Lgs 152/99)

	Unità di misura	Classe 1	Classe 2	Classe 3	Classe 4	Classe 0
Conducibilità el. (20°C)	μS/cm	≤400	≤2500	≤2500	>2500	>2500
Cloruri	mg/l	≤ 25	≤250	≤250	>250	>250
Manganese	μg/l	≤ 20	≤50	≤50	>50	>50
Ferro	μg/l	≤ 50	≤200	≤200	>200	>200
Nitrati	mg/l di NO₃	≤ 5	≤25	≤50	> 50	
Solfati	mg/l di SO₄	≤ 25	≤250	≤250	>250	>250
Ione ammonio	mg/l di NH₄	≤ 0.05	≤0.5	≤0.5	>0.5	>0.5

La classe attribuita deve, però, essere corretta in relazione ai valori di concentrazione rilevati nel monitoraggio di altri parametri addizionali, il cui elenco e relativi valori di soglia sono riportati in Tabella 4.2.3.

Tabella 4.2.3 – Determinazione della classificazione qualitativa in base al valore dei parametri addizionali (Tabella 21 dell'Allegato 1 del D.Lgs. 152/99)

Inquinanti inorganici	μg/l	Inquinanti organici	μg/l
Alluminio	≤200	Composti alifatici alogenati totali	10
Antimonio	≤5	di cui:	
Argento	≤10	- 1,2-dicloroetano	3
Arsenico	≤10	Pesticidi totali (1)	0.5
Bario	≤2000	di cui:	
Berillio	≤4	- aldrin	0.03
Boro	≤1000	- dieldrin	0.03
Cadmio	≤5	- eptacloro	0.03
Cianuri	≤50	- eptacloro epossido	0.03
Cromo tot.	≤50	Altri pesticidi individuali	0.1
Cromo VI	≤5	Acrilamide	0.1
Ferro	≤200	Benzene	1
Fluoruri	≤1500	Cloruro di vinile	0.5
Mercurio	≤1	IPA totali (2)	0.1
Nichel	≤20	Benzo(a)pirene	0.01
Nitriti	≤500		
Piombo	≤10		
Rame	≤1000		
Selenio	≤10		
Zinco	≤3000		

Di particolare importanza risulta la distinzione effettuata separatamente per ognuno dei parametri di base o addizionali che conducono alla classificazione qualitativa, delle zone nelle quali una elevata concentrazione è attribuibile a fenomeni di tipo antropico (attribuzione classe 4) piuttosto che a fenomeni di tipo naturale (attribuzione classe 0). Tale distinzione comporta conseguentemente l'attribuzione dello stato ambientale scadente (per il quale sono necessarie azioni di risanamento)

oppure particolare (per il quale non sono previste azioni di risanamento, ma solo azioni atte ad evitare il peggioramento dello stato delle acque).

Di seguito sono riportati i dati relativi ai parametri di base utilizzati per la classificazione qualitativa 2006-2008:

		µS/cm	l/gm	l/Brl	l/gц	l/gm	mg/l	NH4 ⁺
codice	DATA	Conducibilità	Cloruri	Manganese	Ferro	Nitrati	Solfati	Ione Ammonio
RN08-01	29/03/2006	683	27	208	104	0,9	65	<0,02
RN08-01	18/09/2006	720	35	170	61	1,6	65	<0,02
RN21-02	29/03/2006	980	44	<5	<10	88	76	<0,02
RN21-02	18/09/2006	981	62	<5	<10	104	92	<0,02
RN29-00	28/03/2006	987	33	<5	<10	43	120	<0,02
RN29-00	20/09/2006	969	32	<5	<10	39	116	<0,02
RN30-00	29/03/2006	1180	49	<5	<10	59	161	<0,02
RN30-00	18/09/2006	1173	62	<5	<10	66	201	<0,02
RN31-01	29/03/2006	1200	77	<5	<10	63	111	<0,02
RN31-01	18/09/2006	1207	87	<5	172	60	162	<0,02
RN33-00	29/03/2006	726	23	<5	<10	12	114	<0,02
RN33-00	18/09/2006	688	24	<5	<10	11	125	<0,02
RN33-01	28/03/2006	972	29	<5	<10	45	122	<0,02
RN33-01	20/09/2006	929	31	<5	10	36	117	<0,02
RN34-00	29/03/2006	1445	140	20	<10	20	116	<0,02
RN34-00	18/09/2006	1368	176	16	<10	23	148	<0,02
RN36-00	20/03/2006	1348	116	280	<10	26	118	<0,02
RN36-00	19/09/2006	1284	106	210	<10	28	136	<0,02
RN38-01	20/03/2006	1309	122	<5	70	30	151	<0,02
RN38-01	19/09/2006	1507	192	<5	<10	70	160	<0,02
RN60-01	29/03/2006	687	21	<5	<10	8	112	<0,02
RN60-01	18/09/2006	673	24	<5	<10	10	124	<0,02
RN61-00	29/03/2006	594	19	<5	<10	3	65	<0,02
RN61-00	18/09/2006	587	26	<5	24	2	74	<0,02
RN62-00	20/03/2006	1486	145	<5	24	46	110	<0,02
RN62-00	19/09/2006	1469	166	<5	<10	50	126	<0,02
RN67-00	20/03/2006	1722	302	<5	<10	5	153	<0,02
RN67-00	19/09/2006	1644	352	<5	<10	6	180	<0,02
RN68-00	20/03/2006	1369	198	<5	15	10	126	<0,02
RN68-00	19/09/2006	1062	110	<5	<10	9	153	<0,02
RN71-00	29/03/2006	718	25	<5	<10	20	106	<0,02
RN71-00	18/09/2006	708	41	<5	<10	23	124	<0,02
RN72-00	29/03/2006	505	30	<5	<10	1	8	<0,02
RN72-00	18/09/2006	575	47	58	150	1	2	<0,02
RN73-00	29/03/2006	730	23	<5	<10	8,8	125	<0,02
RN73-00	18/09/2006	734	34	<5	<10	12	151	<0,02
RN74-00	29/03/2006	871	41	45	536	0	91	<0,02
RN74-00	18/09/2006	930	54	<5	15	35	110	<0,02
RN76-00	20/03/2006	2610	383	<5	<10	103	376	<0,02
RN76-00	19/09/2006	1557	178	<5	<10	31	285	<0,02

		mS/cm	l/gm	l/gu	l/gц	l/gm	l/gm	NH4 ⁺ mg/l
codice	DATA	Conducibilità	Cloruri	Manganese	Ferro	Nitrati	Solfati	Ione Ammonio
RN08-01	20/03/2007	704	26	118	<10	<1	49	<0,02
RN08-01	11/10/2007	696	31	115	34	<1	57	<0,02
RN21-02	20/03/2007	941	40	19	<10	74	70	<0,02
RN21-02	11/10/2007	974	54	19	<10	80	78	<0,02
RN29-00	21/03/2007	948	34	<5	<10	41	115	<0,02
RN29-00	18/09/2007	966	47	<5	<10	44	145	<0,02
RN30-00	20/03/2007	887	37	<5	<10	37	129	<0,02
RN30-00	11/10/2007	1200	50	<5	<10	35	175	<0,02
RN31-01	Non campionato							
RN31-01	11/10/2007	1387	155	<5	<10	34	138	<0,02
RN33-00	20/03/2007	681	24	<5	<10	6	108	<0,02
RN33-00	11/10/2007	698	27	<5	<10	5	117	<0,02
RN33-01	21/03/2007	908	39	<5	<10	38	120	<0,02
RN33-01	18/09/2007	1200	59	<5	<10	45	154	<0,02
RN34-00	20/03/2007	1466	195	16	<10	19	127	<0,02
RN34-00	11/10/2007	1624	234	<5	<10	20	136	<0,02
RN36-00	19/03/2007	1261	116	207	<10	20	117	<0,02
RN36-00	19/09/2007	1321	134	275	<10	20	122	<0,02
RN38-01	19/03/2007	1474	160	<5	<10	78	113	<0,02
RN38-01	19/09/2007	1576	220	<5	16	72	131	<0,02
RN60-01	20/03/2007	653	22	<5	<10	8	112	<0,02
RN60-01	11/10/2007	673	25	<5	<10	9	118	<0,02
RN61-00	20/03/2007	567	16	<5	<10	1	65	<0,02
RN61-00	11/10/2007	585	24	<5	<10	<1	63	<0,02
RN62-00	19/03/2007	1445	146	<5	<10	46	110	<0,02
RN62-00	19/09/2007	1442	139	<5	<10	26	126	<0,02
RN67-00	19/03/2007	1869	330	<5	<10	4	155	<0,02
RN67-00	19/09/2007	1898	431	<5	<10	5	160	<0,02
RN68-00	19/03/2007	2400	510	<5	<10	4	76	<0,02
RN68-00	19/09/2007	1451	263	<5	<10	10	123	<0,02
RN71-00	20/03/2007	688	24	<5	<10	19	106	<0,02
RN71-00	11/10/2007	709	28	<5	<10	20	110	<0,02
RN72-00	20/03/2007	542	39	36	<10	<1	2,5	<0,02
RN72-00	11/10/2007	571	48	<5	170	<1	2,7	<0,02
RN73-00	20/03/2007	746	30	<5	<10	15	120	<0,02
RN73-00	11/10/2007	785	39	<5	<10	13	128	<0,02
RN74-00	20/03/2007	907	47	< 5	<10	36	92	<0,02
RN74-00	11/10/2007	951	52	<5	<10	37	100	<0,02
RN76-00	19/03/2007	1468	155	< 5	<10	19	233	<0,02
RN76-00	18/09/2007	1040	103	<5	<10	18	150	<0,02

		mS/cm	l/gm	l/gц	l/gц	l/gm	l/gm	NH4 ⁺ mg/l
codice	DATA	Conducibilità	Cloruri	Manganese	Ferro	Nitrati	Solfati	Ione Ammonio
RN08-01	16/04/2008	692	22	213	243	<1	48	0,16
RN08-01	24/09/2008	730	26	199	54	<1	50	0,13
RN21-02	19/03/2008	953	43	<5	<20	85	83	<0,02
RN21-02	22/09/2008	1044	63	<5	<20	81	76	<0,02
RN29-00	17/03/2008	976	35	<5	<20	49	133	<0,02
RN29-00	10/09/2008	969	30	<5	<20	40	119	<0,02
RN30-00	17/03/2008	872	31	<5	<20	39	130	<0,02
RN30-00	22/09/2008	1196	44	<5	<20	56	164	<0,02
RN31-01	16/04/2008	1426	176	<5	<20	34	115	<0,02
RN31-01	22/09/2008	1347	142	<5	<20	17	136	<0,02
RN33-00	19/03/2008	725	22	<5	<20	5	122	<0,02
RN33-00	22/09/2008	713	20	<5	<20	5	112	<0,02
RN33-01	19/03/2008	950	34	<5	<20	41	130	<0,02
RN33-01	10/09/2008	956	32	7	64	34	120	<0,02
RN34-00	19/03/2008	1614	237	25	33	22	126	<0,02
RN34-00	22/09/2008	1220	77	11	21	29	125	<0,02
RN36-00	12/03/2008	1327	141	355	<20	22	126	<0,02
RN36-00	17/09/2008	1260	127	349	<20	19	115	<0,02
RN38-01	12/03/2008	980	71	<5	66	37	152	<0,02
RN38-01	17/09/2008	1565	180	<5	<20	72	110	<0,02
RN60-01	19/03/2008	670	17	<5	<20	8	118	<0,02
RN60-01	22/09/2008	690	17	<5	<20	8	109	<0,02
RN61-00	17/03/2008	577	14	13	118	<1	68	<0,02
RN61-00	24/09/2008	617	22	<5	<20	1	54	<0,02
RN62-00	12/03/2008	1361	123	<5	34	34	124	<0,02
RN62-00	17/09/2008	1394	120	<5	<20	27	120	<0,02
RN67-00	12/03/2008	2200	449	11	1429	2	162	0,03
RN67-00	17/09/2008	2000	387	<5	<20	4	154	<0,02
RN68-00	12/03/2008	1090	115	<5	<20	7	142	<0,02
RN68-00	17/09/2008	1136	129	<5	<20	6	126	<0,02
RN71-00	17/03/2008	709	21	<5	<20	21	112	<0,02
RN71-00	24/09/2008	735	21	<5	<20	19	103	<0,02
RN72-00	19/03/2008	557	35	68	844	<1	<1	0,19
RN72-00	22/09/2008	586	38	70	956	<1	<1	0,18
RN73-00	19/03/2008	779	29	<5	<20	12	132	<0,02
RN73-00	22/09/2008	766	23	<5	<20	9	116	<0,02
RN74-00	17/03/2008	939	44	<5	<20	40	101	<0,02
RN74-00	24/09/2008	980	43	<5	<20	38	92	<0,02
RN76-00	12/03/2008	1619	181	<5	<20	27	273	0,03
RN76-00	15/09/2008	1630	167	<5	<20	19	241	0,02

Relativamente agli aspetti qualitativi la principale criticità è costituita dalla presenza dei nitrati, che si manifesta in misura quantomeno preoccupante in gran parte degli areali di conoide della pianura emiliano-romagnola; si ricorda che concentrazioni superiori ai 50 mg/l pregiudicano l'uso idropotabile e rendono necessari costosi trattamenti di denitrificazione e/o miscelazioni con acque di migliore qualità. In particolare per quanto riguarda i nitrati, questi sono un parametro discriminante in quanto se superano i valori di 50 mg/l l'attribuzione è di classe 4, così come superando la soglia di 25 mg/l, la classe da attribuire alle acque sotterranee è la classe 3, anche se si presentano uno o più parametri indicatori di classe 0.

I nitrati sono ioni molto solubili, difficilmente immobilizzabili dal terreno, che percolano facilmente nello spessore del suolo raggiungendo quindi l'acquifero. Spesso infatti la qualità delle acque estratte dai pozzi varia significativamente in relazione alla profondità degli strati acquiferi filtrati; ad esempio, in corrispondenza della conoide del Marecchia, sono presenti pozzi relativamente superficiali le cui acque sono caratterizzate da concentrazioni prossime o anche superiori ai limiti di legge per l'uso idropotabile, mentre i pozzi più profondi mostrano una marginale presenza di nitrati.

Valori significativi si sono riscontrati nei seguenti pozzi:

- **RN21-02** (S. Ermete Via Valdazze, profondità 53.60 metri) nel 2006-2007-2008
- RN30-00 (Rimini Via Manfroni, profondità 42.00 metri) nel 2006 e 2008
- RN31-01 (Celle Via Tonale, profondità 31.00 metri) solo nel 2006
- RN38-01(S. Giovanni in M. Via Al Mare, profondità 38.00 metri) nel 2006-2007-2008
- RN62-00 (Cattolica Via Dalla Chiesa, profondità 35.60 metri) solo nel 2006
- RN76-00 (San Clemente Via Cerro profondità 13 metro) solo nel 2006

I composti clorurati non sono presenti in natura ed hanno tossicità, acuta e cronica, e cancerogenicità variabili a seconda dei singoli composti. Il loro utilizzo è di tipo industriale e domestico; alcuni di essi si formano a seguito del processo di disinfezione delle acque con cloro.

Il limite nazionale sulla presenza di tali composti nelle acque sotterranee, definito dal DLgs 152/99, èpari a 10 µg/l, coincidente con il limite per le acque potabili (DLgs 31/01).I composti clorurati utilizzati per l'indicatore sono i seguenti: tricloroetilene, tetracloroetilene, tetracloruro di carbonio, cloroformio, metilcloroformio, dibromoclorometano, diclorobromometano.

Le sostanze che vengono trovate più frequentemente e che danno il contributo più significativoalla sommatoria totale sono Tetracloroetilene, Tricloroetilene (Trielina) e Dicloroetilene.

		ľgď	l/grt	l/grl	ľgu	l/grl
codice	DATA	Somma Composti organici clorurati	Cloroformio	Metilcloroformio / 1- 1-1 Tricloroetano	Trielina / 1,1,2 tricloroetilene	Tetracloroetilene
RN08-01	29/03/2006	<0,1	<0,1	<0,1	<0,1	<0,1
RN08-01	18/09/2006	<0,1	<0,1	<0,1	<0,1	<0,1
RN21-02	29/03/2006	<0,1	<0,1	<0,1	<0,1	0,11
RN21-02	18/09/2006	0,11	<0,1	<0,1	<0,1	<0,1
RN29-00	28/03/2006	2,8	<0,1	1,4	1,4	<0,1
RN29-00	20/09/2006	1,85	<0,1	0,81	0,73	0,21
RN30-00	29/03/2006	<0,1	<0,1	<0,1	<0,1	<0,1
RN30-00	18/09/2006	0,15	<0,1	<0,1	<0,1	<0,1
RN31-01	29/03/2006	<0,1	<0,1	<0,1	<0,1	<0,1
RN31-01	18/09/2006	<0,1	<0,1	<0,1	<0,1	<0,1
RN33-00	29/03/2006	<0,1	<0,1	<0,1	<0,1	<0,1
RN33-00	18/09/2006	<0,1	<0,1	<0,1	<0,1	<0,1
RN33-01	28/03/2006	<0,1	<0,1	<0,1	<0,1	<0,1
RN33-01	20/09/2006	0,13	<0,1	<0,1	<0,1	0,13
RN34-00	29/03/2006	<0,1	<0,1	<0,1	<0,1	<0,1
RN34-00	18/09/2006	0,49	<0,1	<0,1	0,24	0,25
RN36-00	20/03/2006	<0,1	<0,1	<0,1	<0,1	<0,1
RN36-00	19/09/2006	<0,1	<0,1	<0,1	<0,1	<0,1
RN38-01	20/03/2006	<0,1	<0,1	<0,1	<0,1	<0,1
RN38-01	19/09/2006	0,24	<0,1	<0,1	<0,1	0,24
RN60-01	29/03/2006	<0,1	<0,1	<0,1	<0,1	<0,1
RN60-01	18/09/2006	<0,1	<0,1	<0,1	<0,1	<0,1
RN61-00	29/03/2006	<0,1	<0,1	<0,1	<0,1	<0,1
RN61-00	18/09/2006	<0,1	<0,1	<0,1	<0,1	<0,1
RN62-00	20/03/2006	3,4	<0,1	<0,1	<0,1	3,4
RN62-00	19/09/2006	1,5	<0,1	<0,1	<0,1	1,5
RN67-00	20/03/2006	<0,1	<0,1	<0,1	<0,1	<0,1
RN67-00	19/09/2006	<0,1	<0,1	<0,1	<0,1	<0,1
RN68-00	20/03/2006	<0,1	<0,1	<0,1	<0,1	<0,1
RN68-00	19/09/2006	<0,1	<0,1	<0,1	<0,1	<0,1
RN71-00	29/03/2006	<0,1	<0,1	<0,1	<0,1	<0,1
RN71-00	18/09/2006	<0,1	<0,1	<0,1	<0,1	<0,1
RN72-00	29/03/2006	<0,1	<0,1	<0,1	<0,1	<0,1
RN72-00	18/09/2006	<0,1	<0,1	<0,1	<0,1	<0,1
RN73-00	29/03/2006	<0,1	<0,1	<0,1	<0,1	<0,1
RN73-00	18/09/2006	0,2	<0,1	<0,1	<0,1	<0,1
RN74-00	29/03/2006	<0,1	<0,1	<0,1	<0,1	<0,1
RN74-00	18/09/2006	0,48	<0,1	<0,1	<0,1	0,18
RN76-00	20/03/2006	<0,1	<0,1	<0,1	<0,1	<0,1
RN76-00	19/09/2006	<0,1	<0,1	<0,1	<0,1	<0,1

		l/grl	l/6rl	l/grl	l/grl	l/grl
codice	DATA	Somma Composti organici clorurati	Cloroformio	Metilcloroformio / 1-1- 1 Tricloroetano	Trielina / 1,1,2 tricloroetilene	Tetracloroetilene
RN08-01	20/03/2007	<0,1	<0,1	<0,1	<0,1	<0,1
RN08-01	11/10/2007	<0,1	<0,1	<0,1	<0,1	<0,1
RN21-02	20/03/2007	<0,1	<0,1	<0,1	<0,1	<0,1
RN21-02	11/10/2007	<0,1	<0,1	<0,1	<0,1	<0,1
RN29-00	21/03/2007	<0,1	<0,1	<0,1	<0,1	<0,1
RN29-00	18/09/2007	3,78	<0,1	1,9	1,17	0,71
RN30-00	20/03/2007	<0,1	<0,1	<0,1	<0,1	<0,1
RN30-00	11/10/2007	<0,1	<0,1	<0,1	<0,1	<0,1
RN31-01		•	·	·	·	·
RN31-01	11/10/2007	<0,1	<0,1	<0,1	<0,1	<0,1
RN33-00	20/03/2007	<0,1	<0,1	<0,1	<0,1	<0,1
RN33-00	11/10/2007	<0,1	<0,1	<0,1	<0,1	<0,1
RN33-01	21/03/2007	1	<0,1	<0,1	<0,1	1
RN33-01	18/09/2007	<0,1	<0,1	<0,1	<0,1	<0,1
RN34-00	20/03/2007	<0,1	<0,1	<0,1	<0,1	<0,1
RN34-00	11/10/2007	0,3	<0,1	<0,1	0,1	0,3
RN36-00	19/03/2007	<0,1	<0,1	<0,1	<0,1	<0,1
RN36-00	19/09/2007	<0,1	<0,1	<0,1	<0,1	<0,1
RN38-01	19/03/2007	<0,1	<0,1	<0,1	<0,1	<0,1
RN38-01	19/09/2007	0,4	<0,1	<0,1	<0,1	0,4
RN60-01	20/03/2007	<0,1	<0,1	<0,1	<0,1	<0,1
RN60-01	11/10/2007	<0,1	<0,1	<0,1	<0,1	<0,1
RN61-00	20/03/2007	<0,1	<0,1	<0,1	<0,1	<0,1
RN61-00	11/10/2007	<0,1	<0,1	<0,1	<0,1	<0,1
RN62-00	19/03/2007	<0,1	<0,1	<0,1	<0,1	<0,1
RN62-00	19/09/2007	3,4	<0,1	<0,1	0,6	2,8
RN67-00	19/03/2007	<0,1	<0,1	<0,1	<0,1	<0,1
RN67-00	19/09/2007	<0,1	<0,1	<0,1	<0,1	<0,1
RN68-00	19/03/2007	<0,1	<0,1	<0,1	<0,1	<0,1
RN68-00	19/09/2007	<0,1	<0,1	<0,1	<0,1	<0,1
RN71-00	20/03/2007	<0,1	<0,1	<0,1	<0,1	<0,1
RN71-00	11/10/2007	<0,1	<0,1	<0,1	<0,1	0,1
RN72-00	20/03/2007	<0,1	<0,1	<0,1	<0,1	<0,1
RN72-00	11/10/2007	0,1	<0,1	0,1	<0,1	<0,1
RN73-00	20/03/2007	<0,1	<0,1	<0,1	<0,1	<0,1
RN73-00	11/10/2007	<0,1	<0,1	<0,1	<0,1	<0,1
RN74-00	20/03/2007	<0,1	<0,1	<0,1	<0,1	<0,1
RN74-00	11/10/2007	<0,1	<0,1	<0,1	<0,1	<0,1
RN76-00	19/03/2007	<0,1	<0,1	<0,1	<0,1	<0,1
RN76-00	18/09/2007	0,5	0,5	<0,1	<0,1	<0,1

		l/grl	l/gц	l/grl	l/grl	μg/l
codice	DATA	Somma Composti organici clorurati	Cloroformio	Metilcloroformio / 1-1- 1 Tricloroetano	Trielina / 1,1,2 tricloroetilene	Tetracloroetilene
RN08-01	16/04/2008	<0,1	<0,1		<0,1	<0,1
RN08-01	24/09/2008	<0,1	<0,1		<0,1	<0,1
RN21-02	19/03/2008	0,46	<0,1		<0,1	0,46
RN21-02	22/09/2008	0,74	<0,1		<0,1	0,74
RN29-00	17/03/2008	2,55	<0,1		1,8	0,75
RN29-00	10/09/2008	2,44	<0,1		1,6	0,84
RN30-00	17/03/2008	<0,1	<0,1		<0,1	<0,1
RN30-00	22/09/2008	<0,1	<0,1		<0,1	<0,1
RN31-01	16/04/2008	0,33	<0,1		<0,1	0,33
RN31-01	22/09/2008	0,28	<0,1		<0,1	0,28
RN33-00	19/03/2008	1,42	<0,1		<0,1	0,42
RN33-00	22/09/2008	0,17	<0,1		<0,1	0,17
RN33-01	19/03/2008	0,45	<0,1		<0,1	0,45
RN33-01	10/09/2008	0,72	<0,1		<0,1	0,72
RN34-00	19/03/2008	1,23	<0,1		0,2	1,03
RN34-00	22/09/2008	4,22	<0,1	<0,1	0,6	3,16
RN36-00	12/03/2008	<0,1	<0,1		<0,1	<0,1
RN36-00	17/09/2008	<0,1	<0,1		<0,1	<0,1
RN38-01	12/03/2008	0,48	<0,1		<0,1	0,48
RN38-01	17/09/2008	0,76	<0,1		<0,1	0,76
RN60-01	19/03/2008	<0,1	<0,1		<0,1	<0,1
RN60-01	22/09/2008	<0,1	<0,1		<0,1	<0,1
RN61-00	17/03/2008	<0,1	<0,1		<0,1	<0,1
RN61-00	24/09/2008	<0,1	<0,1		<0,1	<0,1
RN62-00	12/03/2008	15,73	<0,1		0,6	15,13
RN62-00	17/09/2008	11,1	<0,1	<0,1	0,9	10,2
RN67-00	12/03/2008	<0,1	<0,1		<0,1	<0,1
RN67-00	17/09/2008	<0,1	<0,1		<0,1	<0,1
RN68-00	12/03/2008	<0,1	<0,1		<0,1	<0,1
RN68-00	17/09/2008	<0,1	<0,1		<0,1	<0,1
RN71-00	17/03/2008	0,42	<0,1		<0,1	0,42
RN71-00	24/09/2008	0,66	<0,1		<0,1	0,66
RN72-00	19/03/2008	<0,1	<0,1		<0,1	<0,1
RN72-00	22/09/2008	<0,1	<0,1		<0,1	<0,1
RN73-00	19/03/2008	<0,1	<0,1		<0,1	<0,1
RN73-00	22/09/2008	<0,1	<0,1		<0,1	<0,1
RN74-00	17/03/2008	1,21	<0,1		<0,1	1,21
RN74-00	24/09/2008	1,33	<0,1		<0,1	1,33
RN76-00	12/03/2008	<0,1	<0,1		<0,1	<0,1
RN76-00	15/09/2008	<0,1	<0,1		<0,1	<0,1

Nel 2008 nel pozzo RN62-00 (Cattolica Via Dalla Chiesa, profondità 35.60 m.) si sono avuti valori superiori al limite come somma dei composti organici clorurati, in particolare Tetracloroetilene.

Valori superiori al limite sono stati riscontrati anche nei campionamenti effettuati dal Dipartimento di Sanità Pubblica dell'AUSL di Rimini, con conseguente informativa al Servizio Territoriale di Arpa Rimini e al Sindaco del Comune interessato.

Non si è rilevata presenza di fitofarmaci nelle acque sotterranee nel periodo considerato.

Il limite nazionale sulla presenza di tali composti nelle acque sotterranee, definito dal DLgs 152/99, è pari a 0,5 μg/l come sommatoria totale (Pesticidi totali) e pari a 0,1 μg/l come fitofarmaci individuali.

I fitofarmaci analizzati, in coerenza con la DGR 2135/2004, sono stati 14: Alachlor, Atrazina, Clorpirifosetile, Diuron, Isoproturon, Linuron, Metolachlor, Molinate, Oxadiazon, Propanil, Simazina, Terbutilazina, Tiobencarb e Trifluralin, oltre ad altri fitofarmaci individuali.

E' necessario precisare che, a partire dal 2005, le determinazioni analitiche sono state concentrate nellaSezione Arpa di Ferrara; ciò ha permesso una maggiore omogeneizzazione dei parametri analizzati e,soprattutto, l'unificazione dei Limiti di Rilevabilità pari a 0,01 μg/l e 0,05 μg/l in funzione della sostanza analizzata. Per la determinazione della sommatoria sono stati considerati i soli valori di concentrazione superiori al limite di rilevabilità strumentale.

5. LO STATO AMBIENTALE (SAAS)

Lo Stato Ambientale delle Acque Sotterranee è definito dalle cinque classi riportate nella tabella 5.1; esse vengono determinate attraverso la sovrapposizione guidata in base ai contenuti della tabella 5.2. delle cinque classi di qualità riportate in tabella 4.2.1 con le quattro classi di quantità riportate in tabella 4.1.1

In tabella 5.3 si nota l'incidenza della classificazione qualitativa Classe 0 nei confronti dello stato ambientale in quanto, indipendentemente dalle condizioni di sfruttamento quantitativo, questa origina lo stato naturale particolare. Inoltre, la differenziazione tra le Classi 2 e 3, basata sul solo valore di concentrazione dei nitrati, determina, nel caso di non eccessivo sfruttamento della risorsa (classi quantitative A e B), il passaggio dallo stato buono e quello sufficiente.

Mentre lo stato ambientale scadente può essere il risultato di una combinazione solo parzialmente negativa, come ad esempio la sovrapposizione della Classe qualitativa 4 con la Clase quantitativa A oppure della Classe qualitativa 2 con la Classe quantitativa C.

Tabella 5.1 – Definizione dello stato ambientale delle acque sotterranee

ELEVATO	Impatto antropico nullo o trascurabile sulla qualità e quantità della risorsa, con l'eccezione di quanto previsto nello stato naturale particolare
BUONO	Impatto antropico ridotto sulla qualità e/o quantità della risorsa
SUFFICIENTE	Impatto antropico ridotto sulla quantità, con effetti significativi sulla qualità tali da richiedere azioni mirate ad evitarne il peggioramento
SCADENTE	Impatto antropico rilevante sulla qualità e/o quantità della risorsa con necessità di specifiche azioni di risanamento
NATURALE/PARTICOLARE	Caratteristiche qualitative e/o quantitative che pur non presentando un significativo impatto antropico, presentano limitazioni d'uso della risorsa per la presenza naturale di particolari specie chimiche o per il basso potenziale quantitativo

Tabella 5.2 – Definizione dello Stato Ambientale (quali-quantitativo) dei corpi idrici sotterranei.

Stato elevato	Stato buono	Stato sufficiente	Stato scadente	Stato particolare
1 – A	1 – B	3 – A	1 – C	0 – A
	2 – A	3 – B	2 – C	0 – B
	2 – B		3 – C	0 – C
			4 – C	0 – D
			4 – A	1 – D
			4 – B	2 – D
				3 – D
				4 – D

Lo stato quantitativo viene aggiornato ogni tre anni ,per cui per il 2006 e 2007 è stato utilizzato quello calcolato nel 2005, mentre è stato aggiornato per il 2008.

Di seguito viene riportata la classificazione dello Stato Ambientale (SAAS) dei pozzi delle conoidi del Marecchia e del Conca dal 2006 al 2008 (Tabella 5.3).

Tabella 5.3 – Stato Ambientale (SAAS) dei corpi idrici sotterranei 2006-2008

Codice	U-Unita	SCAS 2006	P. CRITICI 2006	SQLIAS 2005	SAAS 2006	SCAS 2007	P. CRITICI 2007	SQLIAS 2005	SAAS 2007	SCAS 2008	P. CRITICI 2008	SQLAS 2008	SAAS 2008
										•			
RN08-01	27 Marecchia	0	Mh	Α	Particolare		Mh	A	Particolare	_	Mh	A	Particolare
RN21-02	27 Marecchia	4	NC3	Α	Scadente	4	NC3	A	Scadente	4	NO3	С	Scadente
RN29-00	27 Marecchia	4	NC3	Α	Scadente	3	NC3	Α	Sufficiente	3	NO3	Α	Sufficiente
RN30-00	27 Marecchia	4	NC3	Α	Scadente	3	NC3	Α	Sufficiente	3	NO3	Α	Sufficiente
RN31-01	27 Marecchia	4	NC3	Α	Scadente	3	NC3	Α	Sufficiente	2		Α	Buono
RN33-00	27 Marecchia	2		Α	Buono	2		Α	Buomo	2		С	Scadente
RN33-01	27 Marecchia	3	NC3	Α	Sufficiente	3	NC3	Α	Sufficiente	3	NO3	С	Scadente
RN34-00	27 Marecchia	2		Α	Buono	2		Α	Buono	2		Α	Buono
RN36-00	28 Conca	3	MhNC3	В	Sufficiente	0	Mh	В	Particolare	0	Mh	С	Particolare
RN38-01	28 Conca	3	NC3	С	Scadente	4	NC3	С	Scadente	4	NO3	С	Scadente
RN59-00	27 Marecchia			Α				Α				Α	
RN60-01	27 Marecchia	2		Α	Buono	2		Α	Buomo	2		С	Scadente
RN61-00	27 Marecchia	2		Α	Buomo	2		Α	Buomo	2		Α	Buono
RN62-00	28 Conca	3	NC3	Α	Sufficiente	3	NC3	Α	Sufficiente	4	NO3	С	Scadente
RN63-01	27 Marecchia			Α				Α				Α	
RN67-00	28 Conca	0	a	Α	Particolare	0	a	Α	Particolare	0	₫ Fe	С	Particolare
RN68-00	28 Conca	2		Α	Buomo	0	a	Α	Particolare	2		С	Scadente
RN71-00	27 Marecchia	2		Α	Buomo	2		Α	Buomo	2		Α	Buono
RN72-00	27 Marecchia	2		Α	Buomo	2		Α	Buomo	0	FeMh	В	Particolare
RN73-00	27 Marecchia	2		Α	Buono	2		Α	Buomo	2		Α	Buono
RN74-00	27 Marecchia	0	Fe	Α	Particolare	3	NO3	Α	Sufficiente	3	NO3	В	Sufficiente
RN76-00	28 Conca	4	a Nosso4	С	Scadente	2		С	Scadente	0	904	С	Particolare

Nella conoide del Marecchia si è avuto un miglioramento del chimismo, ma un aumento del deficit idrico. Infatti nei pozzi RN21-02, RN33-00, RN33-01, RN60.-01, RN72-0 e RN74-00 si ha un peggioramento dello Stato Quantitativo che porta ,in alcuni casi ,anche ad un peggioramento dello Stato Ambientale. Inoltre per il pozzo RN72-00 si passa da uno stato buono ad uno stato particolare per l'aumentata presenza di Ferro e Manganese nel 2008.

Per quanto riguarda la conoide del Conca è evidente un peggioramento sia dal punto di vista del chimismo che del deficit idrico che, anche in questo caso, per i pozzi RN62-00 e RN68-00 porta ad un peggioramento dello Stato Ambientale. Questo fa ritenere ragionevole il collegamento anche con il fenomeno del progredire dell'ingressione di acque marine, in quanto si sono riscontrate elevate concentrazioni di cloruri, soprattutto nei pozzi ubicati lungo la costa (RN36-00, RN62-00, RN67-00, RN68-00). Anche il pozzo RN76-00 ha elevate concentrazioni di cloruri e solfati; nel 2008 è passato da uno stato scadente a particolare.

La Figura 5.1 riporta la disposizione sul territorio dei pozzi nelle due Conoidi e lo Stato Ambientale relativamente al 2008.

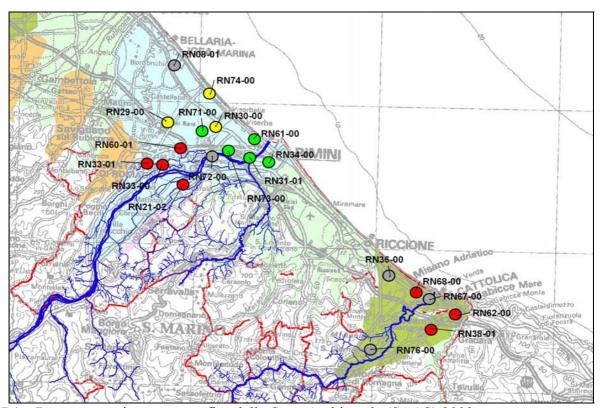


Fig. 5.1 – Rappresentazione cartografica dello Stato Ambientale (SAAS) 2008

6. CONCLUSIONI

Il monitoraggio ambientale costituisce, assieme al controllo dei fattori di pressione, uno dei fondamentali compiti di ARPA. L'obiettivo principale è la sorveglianza continua delle variabili più significative delle matrici ambientali (aria, acqua, suolo, ecc.) sulla base del modello DPSIR (Determinanti, Pressioni, Stato, Impatti, Risposte). Secondo questo modello, gli sviluppi economici e sociali sono i fattori di fondo, i Determinanti, che provocano delle Pressioni sull'ambiente le cui condizioni, Stato, cambiano di conseguenza. Questo provoca degli Impatti, per cui vengono richieste delle Risposte. Le risposte possono riguardare qualsiasi elemento del sistema.

Le reti di monitoraggio, attraverso l'impiego di strumentazione automatica, manuale e campagne di misura, permettono di acquisire dati e di determinare indicatori specifici per l'analisi e la valutazione dello stato dell'ambiente.

Le criticità legate alla risorsa idrica sotterranea riguardano sia gli aspetti quantitativi che qualitativi. Dal punto di vista quantitativo, gli ingenti prelievi da falda, dovuti ai settori civile, industriale e agrozootecnico, possono portate a problemi di sovrasfruttamento della falda, che si manifestano nei fenomeni di subsidenza e nella tendenza all'abbassamento delle falde.

Lo Stato di Qualità delle acque sotterranee può essere determinato sia dalla presenza di sostanze inquinanti, attribuibili principalmente ad attività antropiche, che da meccanismi idrochimici naturali, che modificano la qualità delle acque profonde. Le possibilità di inquinamento antropico sono maggiormente presenti nell'alta pianura, in condizioni di acquifero libero, dove avviene la maggiore alimentazione, mentre nella medio-bassa pianura, in condizioni di acquifero confinato, avvengono principalmente processi evolutivi naturali delle acque di infiltrazione più antica.

I principali inquinanti derivati dagli insediamenti civili sono le sostanze organiche biodegradabili, il settore agro-zootecnico produce inquinamento da nutrienti, fertilizzanti e fitosanitari, mentre l'industria genera quello da sostanze organiche alogenate e da metalli pesanti.

Lo SCAS (Stato Chimico delle Acque Sotterranee) è un indice che riassume in modo sintetico lo stato qualitativo delle acque sotterranee (di un corpo idrico sotterraneo o di un singolo punto d'acqua) basandosi sulle concentrazioni medie annue dei parametri di base e addizionali e valutando con pesi diversi quello che determina le condizioni peggiori.

Scopo dell'indicatore è quello di evidenziare in modo sintetico le zone sulle quali insiste una criticità ambientale dal punto di vista qualitativo della risorsa idrica sotterranea. La classificazione è effettuata

non solo analizzando singolarmente la distribuzione sul territorio degli inquinanti che derivano dalle attività antropiche, ma anche correlando questa con la distribuzione di parametri chimici di origine. naturale che, per le concentrazioni anche elevate dovute principalmente alle caratteristiche intrinseche dell'acquifero, possono compromettere l'utilizzo delle acque stesse. L'indice individua gli impatti antropici sui corpi idrici sotterranei che necessitano di una riduzione delle pressioni e/o di azioni finalizzate a prevenirne il peggioramento.

Nel grafico 6.1 si riassume la classificazione dello Stato Qualitativo (SCAS) dei pozzi delle conoidi del Marecchia e del Conca dal 2006 al 2008.

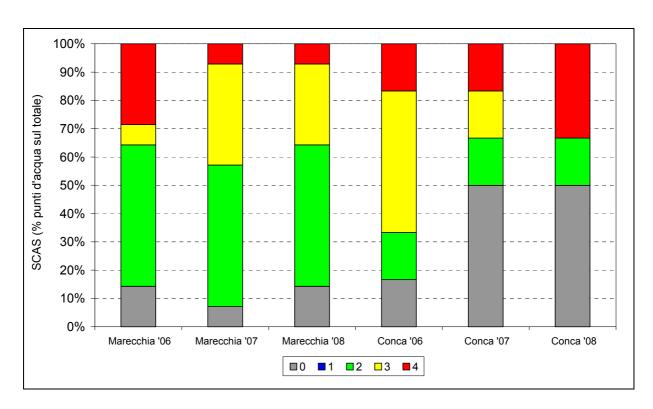


Grafico 6.1 – Classificazione dello Stato Qualitativo (SCAS) 2006-2008

Dall'analisi si può notare un miglioramento dello SCAS dal 2006 al 2008 per quanto riguarda la conoide Marecchia, ma un deciso peggioramento nella conoide Conca.

Infatti soprattutto nella conoide del Conca oltre allo stato Scadente si ha anche un elevato numero di stazioni in classe 0 (caratteristiche scadenti di origine naturale) determinato dalla presenza di origine naturale di Ferro, Manganese, Cloruri, Solfati ubicati prevalentemente nelle conoidi romagnole caratterizzate da una scarsa circolazione delle acque e dalla ridotta dimensione dei serbatoi.

Lo SQuAS (Stato Quantitativo delle Acque Sotterranee) è un indice che, sulla base delle caratteristiche dell'acquifero (tipologia, permeabilità, coefficienti di immagazzinamento) e del relativo sfruttamento (tendenza piezometrica e della portata, prelievi), riassume in modo sintetico lo stato quantitativo delle acque sotterranee di un corpo idrico sotterraneo significativo.

Esso si basa sulle alterazioni, misurate o previste, delle condizioni di equilibrio idrogeologico di un corpo idrico, definite come condizioni nelle quali le estrazioni o le alterazioni della velocità naturale di ravvenamento sono sostenibili per il lungo periodo (almeno 10 anni).

L'Indice SQuAS valuta lo stato quantitativo della risorsa, interpretandolo in termini di equilibrio di bilancio idrogeologico dell'acquifero ovvero di capacità, da parte di questo, di sostenere sul lungo periodo gli emungimenti che su di esso insistono in rapporto ai fattori di ricarica. Entrano in gioco in questo caso le caratteristiche intrinseche di potenzialità dell'acquifero, nonché quelle idrodinamiche e quelle legate alle capacità di ricarica.

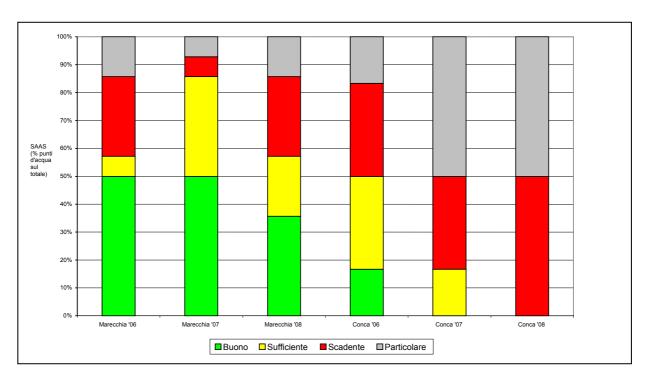
Esso descrive lo stato di sfruttamento e la disponibilità delle risorse idriche sotterranee in un'ottica di sviluppo sostenibile e compatibile con le attività antropiche. Tale indice può essere di supporto per la pianificazione e per una corretta gestione della risorsa idrica.

Grafico 6.2 – Classificazione dello Stato Quantitativo (SQUAS) 2006-2008

Dall'analisi dei dati risulta evidente un peggioramento del deficit idrico sia nella conoide del Marecchia ma soprattutto del Conca (Grafico 6.2) dove tutti i pozzi si trovano in classe C.

Probabilmente la situazione nell'ultimo triennio è in buona parte da attribuire alle condizioni climatiche estreme delle annualità 2006 e 2007, caratterizzate da eventi particolarmente siccitosi, con il risultato di un aggravamento dello stato quantitativo soprattutto nel 2008. Inoltre in gran parte nella pianura riminese la causa prevalente di deficit idrico è rappresentata dai prelievi autonomi dalle falde tramite pozzi privati.

L'indice SAAS (Stato Ambientale delle Acque Sotterranee) è uno schema di classificazione delle acque sotterranee che integra la valutazione del grado di sfruttamento della risorsa idrica (classificazione quantitativa) e l'analisi di parametri chimico-fisici (classificazione chimica); l'interpolazione di queste due classi dà lo Stato Ambientale dei corpi idrici sotterranei. L'Indice SAAS rappresenta, attraverso la classificazione quali-quantitativa del sistema, una visione integrata degli aspetti qualitativi e quantitativi, partendo dal presupposto che l'analisi della complementarietà dei due aspetti sia essenziale per la corretta gestione della risorsa.


Esso costituisce un valido supporto per la valutazione ed il monitoraggio della risposta del sistema ad azioni/regolamentazioni di carattere pianificatorio principalmente volte alla sostenibilità dell'uso della risorsa sul lungo periodo (azioni di risanamento e/o mantenimento della risorsa).

Lo Stato Ambientale scadente viene determinato da condizioni chimiche scadenti per forte impatto antropico (SCAS - classe 4), oppure da deficit idrico (classe C).

Nelle conoidi più orientali diventa determinante lo stato ambientale particolare, che non essendo determinato dallo stato quantitativo particolare è relativo al solo stato chimico particolare di origine naturale.

In alcune aree invece si risconta che lo stato ambientale scadente è determinato dal solo stato chimico scadente (SCAS-classe 4) anche in presenza di SQuAS in classe A, mentre in altre vale il contrario, ovvero i problemi sono determinati dal solo deficit idrico, dove la qualità della risorsa è buona o sufficiente.

Grafico 6.3 – Classificazione ambientale (SAAS) delle conoidi Marecchia e Conca (2006-2008)

In generale, come si nota dal Grafico 6.3, la situazione dello Stato Ambientale del 2008 nella conoide del Marecchia è del 35% di pozzi di Stato Buono, 20 % di Stato Sufficiente, 30% di Stato Scadente e un 15% di Stato Particolare.

Nella conoide del Conca è invece evidente il peggioramento dal 2006 al 2008 che porta ad avere un 50% di Stato Scadente dovuto in gran parte al deficit idrico e un 50% di Stato Particolare che comporta comunque caratteristiche scadenti di origine naturale

La Subsidenza è un fenomeno di abbassamento della superficie terrestre che può essere determinato sia da cause naturali (evoluzioni della crosta terrestre, costipamento dei sedimenti) che antropiche (prelievi di acqua e di gas dal sottosuolo).

La pianura emiliano-romagnola è caratterizzata da un fenomeno di subsidenza naturale al quale si sovrappone, in diverse aree, un abbassamento del suolo di origine antropica, legato principalmente ad eccessivi emungimenti di acque sotterranee e, in misura minore, all'estrazione di gas da formazioni geologiche profonde.